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One-dimensional stochastic Le´vy-Lorentz gas
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We introduce a Le´vy-Lorentz gas in which a light particle is scattered by static point scatterers arranged on
a line. We investigate the case where the intervals between scatterers$j i% are independent random variables
identically distributed according to the probability density functionm(j);j2(11g). We show that under
certain conditions the mean square displacement of the particle obeys^x2(t)&>Ct32g for 1,g,2. This
behavior is compatible with a renewal Le´vy walk scheme. We discuss the importance of rare events in the
proper characterization of the diffusion process.

PACS number~s!: 05.40.2a, 11.80.2m, 02.50.2r, 05.60.2k
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I. INTRODUCTION

In recent years there has been a growing interes
anomalous diffusion defined by

^x2&5Ddtd ~1!

andd.1 @1–4#. Such a behavior was found in chaotic d
fusion in low dimensional systems@5,6#, tracer diffusion in a
rotating flow@7#, N body Hamiltonian dynamics@8#, Lorentz
gas with infinite horizon@1,9#, and diffusion in egg crate
potentials@10#. In all these examples one observes long b
listic flights in which the diffusing particle moves at a co
stant velocity. The transport is characterized by a distribut
of free flight times that follows a power law decay. The
processes have usually been analyzed using the Le´vy walk
framework~see more details below! @2–4,6#.

It has been recently suggested by Levitz@11# that three-
dimensional molecular Knudsen diffusion, at very low pre
sures, inside porous media can be described by Le´vy walks.
It has also been shown@12# that pore chord distributions in
certain three-dimensional porous media decay as a po
law, at least for several length scales. Hence one can an
pate that a light test particle injected into such a medium m
exhibit a Lévy walk. This has motivated the investigation
a fractal Lorentz gas. Levitz@11# has simulated trajectorie
of a light particle reflected from a three-dimensional int
section of a four-dimensional Weierstrass-Mandelbrot hy
surface, and found an enhanced Le´vy-type diffusion.

Here we investigate a one-dimensional stochastic Lore
gas which we call a Le´vy-Lorentz gas. In this model a ligh
particle is scattered by a fixed array of identical scatter
arranged randomly on a line. Upon each collision event
light particle can be transmitted~or reflected! with probabil-
ity T ~or R512T). We investigate the case when the inte
vals between the scatterers are independent identically
tributed random variables with a diverging variance.

We find ~a! a lower bound for the mean square displac
ment that is compatible with the Le´vy walk model, and~b!
that the generalized diffusion coefficientDd is very sensitive
to the way the system has been prepared at timet50. As
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expected, we show that the transport is not Gaussian. In
tems that exhibit normal diffusion, the contribution from ba
listic motion, x25v2t2, is important only for short times
here we show that the ballistic motion cannot be neglec
even att→`. The ballistic paths contribute to the genera
ized diffusion coefficientDd exhibiting a behavior different
than normal.

II. MODEL AND NUMERICAL PROCEDURE

Assume a light particle which moves with a consta
speed (v561) among identical point scatterers arrang
randomly on a line. Upon each collision, the probability th
the light particle is transmitted~reflected! is T (R512T).
The intervals between scattering points,j i.0 with (i
5 . . . ,2n, . . . ,21,0,1, . . . ), are independent identically
distributed random variables described by a probability d
sity function m(j). An important random variable isxf de-
fined to be the distance between the initial location of
light particle (x50) and the first scatterer in the sequen
located atx.0. The random variablexf is described by the
probability density functionh(xf). A set of scatterers~black
dots! is given schematically by

where the open circle represents the light test particle at t
t50. We consider the case when for largej, m(j)
;j2(11g), with 0,g,2. Thus the variance of the lengt
intervals $j i% diverges. A realization of the scatterers
shown in Fig. 1, for the caseg53/2. We observe large gap
which are of the order of the length of the system.

The case for which the variance converges has been
vestigated thoroughly in@13–17#, resulting in:~i! a normal
Gaussian diffusion as expected from the central limit th
rem, and~ii ! a 3/2 power law decay int of the velocity
autocorrelation function.

In this work we present numerical results for the caseg
53/2 andT51/2. We use the following numerical proce
dure. First we generate a set of scatterers on a o
dimensional lattice with a lattice spacing equal to unity. U
1164 ©2000 The American Physical Society
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PRE 61 1165ONE-DIMENSIONAL STOCHASTIC LÉVY-LORENTZ GAS
ing a discrete time and space iteration scheme we find
exact expression for the probability of finding the particle
x at time t, p(x,tux50,t50), given that att50 the particle
is on x50. The initial location of the particle is determine
using equilibrium initial conditions~see details below!. The
initial velocity is v51 or v521 with equal probabilities.
p(x,tux50,t50) depends on the realization of disorder w
have generated in the first step. This procedure is repe
many times.

In Appendix A we explain how we generated the rando
intervals $j i%. When g53/2 the mean̂ j&[*0

`m(j)dj is
finite while the second moment^j2&5`. Since uvu51 the
characteristic microscopic time scale is^j& which is referred
to as the mean collision time, and our simulations are
times t;1000̂ j&. For our choice of parameters^j&;4 ~see
more details in Appendix A!.

III. RESULTS

Let us analyze our one-dimensional Le´vy-Lorentz model
using the Le´vy walk approach@2–4,6,18#. Lévy walks de-
scribe random walks that exhibit enhanced diffusion and
based on the generalized central limit theorem and L´vy
stable distributions@19#. Briefly, a particle moves with a con
stant velocityv511 or v521 and then at a random tim
t1 its velocity is changed. Then the process is renewed. E
collision is independent of the previous collisions. The tim
between collision events$t i% are assumed to be independe
identically distributed random variables, given in terms o
probability density functionq(t). One might expect that the
dynamics of the Le´vy-Lorentz gas can be analyzed using t
Lévy walk renewal approach withq(t);t2(11g), for large
t and 0,g,2, which leads to

FIG. 1. A realization of a set of scatterers withg53/2 exhibit-
ing gaps on many scales. The horizontal axis is thex coordinate.
Throughout this work we consider dimensionless units.
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^x2&;H t32g, 1,g,2

t2, 0,g,1.
~2!

For g.2 one finds normal diffusion. It is clear that the r
newal Lévy walk approach and the Le´vy-Lorentz gas are
very different. Within the Le´vy-Lorentz gas collisions are
not independent and correlations are important. Hence
interesting to check whether the renewal Le´vy walk model is
suitable for the description of the Le´vy-Lorentz gas. In this
context it is interesting to recall that Sokolovet al. @20# have
shown that correlations between jumps in a Le´vy flight in a
chemical space destroy the Le´vy statistics of the walk.

We consider a continuum model to derive our analyti
results; the generalization to the lattice case is straight
ward. Let^p(x,tux50,t50)&dx be the probability, averaged
over disorder, of finding the test particle at timet, in the
interval (x,x1dx). Initially, at time t50, the particle is at
x50, and there is an equal probability of the particle havi
a velocity v511 or v521. Figures 2 and 3 present nu
merical simulations which shoŵp(x,tux50,t50)&. One
can see that in addition to the central peak onx50, two
other peaks appear at locationsx56t. These peaks, known
as ballistic peaks, were observed in a similar context in ot
systems exhibiting enhanced diffusion@6,11,21#. The peaks
are stable on the time scale of the numerical simulation. T
height of these peaks decays with time, and according to
finite time numerics the central peak and the ballistic pe
decay according to the same power law wheng53/2.

Let us analyze analytically the time dependence of
ballistic peaks and calculate their contribution to the me
square displacement. Since in our modeluvu51 it is clear
that

^p~x,tux50,t50!&50, for uxu.t. ~3!

FIG. 2. A histogram presentinĝp(x,tux50,t50)& versusx for
time t51024,g53/2, andT51/2. Notice the ballistic peaks of the
propagator atx56t. The average is over 1.83105 realizations of
disorder. The bin length is unity.
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We decompose the ensemble averaged probability den
into two terms

^p~x,tux50,t50!&5^ p̃~x,tux50,t50!&

1
1

2
Qb~ t !@d~x1t !1d~x2t !#. ~4!

The first term on the right-hand side,^ p̃(x,tux50,t50)&, is
the probability density of finding the light particle atuxu
,t. Qb(t) is the probability of finding the light particle a
x5t (x52t) if initially at x50 and its velocity is11
(21). The left-right symmetry in Eq.~4! means that we have
used the symmetric initial condition~i.e., v511 or v5
21 with equal probabilities! and the assumption that th
system of scatterers is isotropic in an averaged sense. U
a similar notation we write

^x2&5^x̃2&1^x2&b , ~5!

where^x2&b is the ballistic contribution to the mean squa
displacement. From Eq.~4! we have

Qb~ t !t2<^x2~ t !&<t2. ~6!

The upper bound is an obvious consequence of the fact
uvu51. The lower bound, found usinĝx2(t)&b<^x2(t)&, is
of no use when all moments ofm(j) converge, since then
Qb(t) usually decays exponentially for long times. Equati
~6! is useful when the moments ofm(j) diverge, a case we
consider here.

To find Qb(t) consider a test particle which is initially o
velocity 11 and located atx50. The probability that it
reachesx5t, at time t, is Tr wherer is the number of scat
terers in the interval of length (0,t). Hence,

FIG. 3. The same as Fig. 2 for timet54096. The probability of
finding a ballistic path,̂ p(x56t,tux50,t50)&.0.004, is small
but yet of statistical significance when^x2(t)& is calculated.
ity

ing

at

Qb~ t !5(
r 50

`

TrGr~ t !, ~7!

and Gr(t) is the probability of findingr scatterers in (0,t).
Gr(t) can be calculated in terms ofm(j) and of h(xf). In
Appendix B we use renewal theory to calculate the Lapla
t→u transform ofQb(t),

Q̂b~u!5
1

u
1

~T21!ĥ~u!

@12Tm̂~u!#u
. ~8!

When T51, Q̂b(u)51/u, as expected from a transmittin
set of scatterers. In deriving Eq.~8! we have used the mode
assumptions that the intervals$j i% are statistically indepen
dent and identically distributed.

The functionh(xf) depends on the way the system
scatterers and light particle is initially prepared. Consider
following preparation process. A scatterer is assigned at
location x52L ~eventuallyL→`), then random indepen
dent length intervals are generated using the probability d
sity m(j). These length intervals determine the location
scatterers on the line. When the sum of the length interv
exceeds 2L the process is stopped. As mentioned, at timt
50 the light particle is assigned to the pointx50. When the
mean distance between scatterers^j&5*0

`jm(j)dj con-
verges~i.e., 1,g) andL→` then according to@19,22#

h~xf !5

12E
0

xf
m~j!dj

^j&
, ~9!

which is standard in the context of the Lorentz gas when
moments ofm(j) converge@13,15#. This type of initial con-
dition is called the equilibrium initial condition. When 1
,g,2, Eq. ~9! implies thath(xf);(xf)

2g and hencê xf&
5*0

`xfh(xf)dxf→`. At first sight this divergence migh
seem to be paradoxical, since the mean distance betw
scatterers,̂j&, converges. We notice however that the po
x50 has a higher probability to be situated in a large g
Hence, statistically the intervalj0 is much larger than the
others and in our casêxf&5`. Eq. ~9! implies that on av-
erage one has to wait an infinite time for the first collisi
event.

In numerical simulations the system’s lengthL is finite, so
that Eq.~9! is only an approximation, which we expect to b
valid for xf!L. However, if we observe a system for tim
t!L the boundary condition is not expected to influence
anomalous dynamics. We have generated numerically m
random systems, usingm(j);j2(11g) and g53/2. As
shown in Fig. 4,h(xf);(xf)

2g as predicted in Eq.~9!.
We consider the smallu expansion, of the Laplace trans

form of m(j),

m̂~u!512^j&u1a~^j&u!g
•••, ~10!

where 1,g,2 anda is a constant. Using a Tauberian the
rem and Eqs.~8! and~9! it can be shown that for long time
t
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PRE 61 1167ONE-DIMENSIONAL STOCHASTIC LÉVY-LORENTZ GAS
Qb~ t !5
a

G~22g! S t

^j& D
12g

1
2a~g21!

G~22g!

T

12T S t

^j& D
2g

1•••. ~11!

Inserting Eq.~11! in Eq. ~6! we find

a^j&2

G~22g!S t

^j& D
32g

<^x2~ t !&<t2. ~12!

FIG. 4. The probability of finding the first scatterer at a distan
xf from the origin. Here the average is over 33105 realizations, and
half the length of the system isL5105. We use a bin of length 32
~dimensionless units!. The solid curve is the theoretical predictio
Eq. ~9!, with no fitting parameters. For largexf , h(xf);xf

2g and
g53/2, which implies that̂ xf& diverges.

FIG. 5. log10@^x
2&# versus log10(t). The points are numerica

results. The straight curve is the asymptotic behavior of the lo
bound, Eq.~12! ~i.e., ^x2&b). We useg53/2 and sô x2&>Ct3/2.
This bound demonstrates that the diffusion is enhanc
namely, the mean square displacement increases faster
linearly with time.

In Fig. 5, we present the mean square displacement of
light particle obtained by numerical simulations for the ca
g53/2. We see that for the chosen values of parameters
asymptotict32g behavior can be observed for times that a
accessible on our computer. Figure 5 clearly shows that
ballistic contribution^x2&b to the mean square displaceme
^x2& is significant. Notice that our numerical results are p
sented for times that are much larger than the mean collis
time ^j&;4.

In Fig. 6 we show the probability of finding a ballisti
path, namely, the probability of finding the light particle
time t at x51t, or at x52t. By definition these probabili-
ties are equal toQb(t)/2. We observe thet12g behavior of
Qb(t), Eq.~11!, with which our lower bound was found. Th
fact that the probability of finding the particle atx5t is equal
to the probability of finding the particle atx52t means that
our system is isotropic in an averaged sense. This is achie
by choosing large values ofL.

The lower bound in Eq.~12! does not depend on the tran
mission coefficientT. Thus, even when all the scatterers a
perfect reflectors, withR51, the diffusion is enhanced
Large gaps that are of the order of the lengtht are respon-
sible for this behavior. The transmission coefficient has
important role in determining what is the asymptotic time
the problem. The condition that the first term in Eq.~11!
dominates over the second reads

t

^j&
@2~g21!

T

12T
. ~13!

Only under this condition is the behavior in Eq.~12! ex-
pected to be valid.

e

r

FIG. 6. The probability of finding the light particle at timet at
x51t ~crosses! and atx52t ~dots! versus time. The solid curve is
the theoretical prediction, Eq.~11! ~no fitting parameters!, which
givesQb(t)/2;t (12g), with g53/2.
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The lower bound in Eq.~12! is compatible with the re-
newal Lévy walk approach Eq.~2!. Other stochastic model
@1,23# for enhanced diffusion based on Le´vy scaling argu-
ments predict

^x2&;t2/g for 1,g,2, ~14!

which is different from Eq.~2!. This approach is based upo
a fractional Fokker-Planck equation~FFPE!,

]p~x,t !

]t
5Dg¹gp~x,t !, ~15!

used in@23# to predict an enhanced diffusion. The nonloc
fractional operator in Eq.~15! is defined in Fourierk space
according to the transformation¹g→2ukug. Our findings
here show that Eq.~14! does not describe the dynamics
the Lévy-Lorentz gas, since 32g>2/g for 1<g<2.

Consider now the case when the light particle is initia
located at a scattering point. Such an initial condition
called a nonequilibrium initial condition. Under this cond
tion h(xf)5m(xf) instead of Eq.~9!. This means that the
particle has to wait an average time^j& before the first col-
lision event instead of the infinite time when the equilibriu
initial conditions were used. Using Eqs.~5!, ~8!, and ~10!,
and m̂(u)512(Au)g1••• for 0,g,1 and smallu, we
find

^x2&>H 1

12T
a

~g21!

G~22g!
^j&2S t

^j& D
22g

, 1,g,2

1

12T

~12g!

G~22g!
A2S t

AD 22g

, 0,g,1.

~16!

For 1,g,2 the bound differs from thet32g found in Eq.
~12!, where we choseh(xf) according to Eq.~9!. Thus the
ballistic contribution^x2&b , defined in Eq.~5!, behaves dif-
ferently for the two ensembles even whent→`. This is very
different from regular Lorentz gases, which in the limitt
→` are not sensitive to the choice ofh(xf).

Finally, Fig. 7 shows the behavior of the correlation fun
tion ^p(x50,tux50,t50)& obtained from the numerica
simulation with equilibrium initial conditions. We observe
t21/2 decay of the correlation function. This behavior is co
patible with standard Gaussian diffusion, which gives
well known t2d/2 result ind dimensions. We find this behav
ior for time scales which are much larger than the me
collision time ^j&; however we have no proof that this b
havior is asymptotic. On the other hand, the Le´vy walk
model predictŝ p(x50,tux50,t50)&;t21/g @6#.

IV. SUMMARY AND DISCUSSION

In this work we have considered a one-dimensional Le´vy-
Lorentz gas. We have shown the following.

~a! The mean square displacement in the Le´vy-Lorentz
gas is compatible with the Le´vy walk framework and not
with the FFPE.

~b! Ballistic contributions to the mean square displac
ment are important even for large times.
l

s

-

-
e

n

-

~c! The ballistic peaks atx51t and x52t can be ana-
lyzed analytically. They decay as power laws.

~d! The way in which the system is prepared att50 ~i.e.,
equilibrium versus nonequilibrium initial conditions! deter-
mines the behavior of the ballistic peaks. Since these pe
contribute to the mean square displacement even at l
times, we conclude that the diffusion coefficientDd is sen-
sitive to the way the system is prepared.

In our work we considered an initial conditionv51 or
v521 with equal probabilities. It is clear that if we assign
velocity v511 to the light particle, att50, ^p(x,tux50,t
50)& will never become symmetric, even approximately. I
stead of the three peaks in Fig. 3 one will observe only t
peaks, one atx50 and the other atx51t.

The reason for these behaviors in the Le´vy-Lorentz gas
stems from the statistical importance of ballistic paths. T
is different from systems in which diffusion is normal, i
which these paths are of no significance at long times. Th
similarly to Newtonian dynamics, the system exhibits
strong sensitivity to initial conditions.

Experiments measuring diffusion phenomena usua
sample data only in a scaling regime~e.g., 2AD1t,x
,AD1t). Rare events where the diffusing particle is fou
outside this regime are often assumed to be of no statis
importance. Here we showed that for the Le´vy-Lorentz gas
rare events found in the outermost part of^p(x,tux50,t
50)& are of statistical importance.

Note added in proof.Recently, related theoretical work o
enhanced diffusion was published@24#.

ACKNOWLEDGMENTS

We thank A. Aharony, P. Levitz, I. Sokolov, and R. Me
zler for helpful discussions.

FIG. 7. log10@^p(x50,tux50,t50)&# versus log10(t). The
points are numerical results. The straight curve is a fit exhibiting
t21/2 behavior.



s

c-

e
g

f

PRE 61 1169ONE-DIMENSIONAL STOCHASTIC LÉVY-LORENTZ GAS
APPENDIX A

As mentioned we use a lattice model for the simulation
that j is an integer. We use the transformation

j5INTH F tanS up

2 D G1/gJ 11. ~A1!

HereI 5INT$z% is the integer closest toz satisfyingI<z. In
Eq. ~A1! u is a random variable distributed uniformly a
cording to

0<umin<u<umax<1, ~A2!

whereumin and umax are cutoffs. It is easy to generate th
random variableu on a computer. The probability of findin
an interval of lengthj is,

m~j!5E
j21

j

mc~y!dy ~A3!

with

mc~y!55
0, y,ymin

2g

pD

yg21

11y2g
, ymin,y,ymax

0, y.ymax.

~A4!

Here

ymin5F tanS uminp

2 D G1/g

, ymax5F tanS umaxp

2 D G1/g

~A5!

are the cutoffs ofmc(y). When umin50 and umax51 we
haveymin50 andymax5`. In Eq. ~A4! D5umax2umin de-
termines the normalization condition*0

`mc(y)dy51.
r

ev
o

To derive Eqs.~A3!–~A5! we use the transformationy
5@ tan(up/2)#1/g, and then mc(y)5g(u)udu/dyu, where
g(u) is the uniform probability density ofu.

For largej we find

m~j!;H 2g

pD
j212g, j,jmax

0, j.jmax,

~A6!

with jmax5INT$@ tan(umaxp/2)#1/g%11. Whenumax51 the
second moment ofm(j) diverges.

In our numerical simulations we considerumin51/2,
umax51, andg53/2. Then^j&.4.031 and for largej, we
find

m~j!;~6/p!j25/2, j@1. ~A7!

APPENDIX B

The calculation ofQ̂b(u) can be found in@19,22#. The
probability that the interval (0,t) is empty is

G0~ t !512E
0

t

h~t!dt ~B1!

and in Laplace spaceĜ0(u)5@12ĥ(u)#/u. The Laplace
transform ofGr(t) for r>1 is found using convolution:

Ĝr~u!5ĥ~u!m̂ r 21~u!Ŵ~u!. ~B2!

W(t)512*0
t m(j)dj is the probability that an interval o

length (0,t) is empty, given that a scatterer occupies 02. In
Laplace spaceŴ(u)5@12m̂(u)#/u. Using Eqs.~B1!, ~B2!,
and ~7! we find ~8!.
ev.
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