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One-dimensional stochastic Ley-Lorentz gas
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We introduce a Ley-Lorentz gas in which a light particle is scattered by static point scatterers arranged on
a line. We investigate the case where the intervals between scaftéreese independent random variables
identically distributed according to the probability density functiegé)~& *?). We show that under
certain conditions the mean square displacement of the particle gléfi3)=Ct>~” for 1<y<2. This
behavior is compatible with a renewal\newalk scheme. We discuss the importance of rare events in the
proper characterization of the diffusion process.

PACS numbd(s): 05.40—a, 11.80—m, 02.50--r, 05.60—k

[. INTRODUCTION expected, we show that the transport is not Gaussian. In sys-
tems that exhibit normal diffusion, the contribution from bal-
In recent years there has been a growing interest ifistic motion, x?=v?t?, is important only for short times;

anomalous diffusion defined by here we show that the ballistic motion cannot be neglected
even att—o. The ballistic paths contribute to the general-
(x?y=Dt° (1)  ized diffusion coefficienD ; exhibiting a behavior different
than normal.
and 6>1 [1-4]. Such a behavior was found in chaotic dif-
fusion in low dimensional systen}§,6], tracer diffusion in a Il. MODEL AND NUMERICAL PROCEDURE

rotating flow[7], N body Hamiltonian dynamick3], Lorentz
gas with infinite horizon[1,9], and diffusion in egg crate
potentials[10]. In all these examples one observes long bal

Assume a light particle which moves with a constant
speed y==1) among identical point scatterers arranged
listic flights in which the diffusing particle moves at a con- "andomly on a line. Upon each collision, the probability that
stant velocity. The transport is characterized by a distributiorin€ light particle is transmittedreflected is T (R=1-T).
of free flight times that follows a power law decay. These € intervals between scattering pointg,>0 with (i
processes have usually been analyzed using fivy btk = ---»— N, --.,—101...), areindependent identically
framework(see more details below2—4,§. d_|str|bute_d random var_lables described by a_probablhty den-

It has been recently suggested by Le\it4] that three-  Sity function x(£). An important random variable is; de-
dimensional molecular Knudsen diffusion, at very low pres-f_'”ed to pe the distance betvyeen the mmgl location of the
sures, inside porous media can be described lwy bealks.  light particle k=0) and the first scatterer in the sequence
It has also been showi12] that pore chord distributions in located ax>0. The random variablg; is described by the
certain three-dimensional porous media decay as a powdrobability density functiorh(x;). A set of scattererblack
law, at least for several length scales. Hence one can antic§lots is given schematically by
pate that a light test particle injected into such a medium may

exhibit a Lery walk. This has motivated the investigation of PN - & & &
a fractal Lorentz gas. Levitgll] has simulated trajectories = e~ o™ %
of a light particle reflected from a three-dimensional inter- ——

section of a four-dimensional Weierstrass-Mandelbrot hyper o

surface, and found an enhancedsdype diffusion.

Here we investigate a one-dimensional stochastic Lorentwhere the open circle represents the light test particle at time
gas which we call a Ley-Lorentz gas. In this model a light t=0. We consider the case when for large u(¢)
particle is scattered by a fixed array of identical scatterers-¢~ (1" with 0<y<2. Thus the variance of the length
arranged randomly on a line. Upon each collision event théntervals {&} diverges. A realization of the scatterers is
light particle can be transmitte@r reflected with probabil-  shown in Fig. 1, for the casg= 3/2. We observe large gaps
ity T (or R=1—T). We investigate the case when the inter-which are of the order of the length of the system.
vals between the scatterers are independent identically dis- The case for which the variance converges has been in-
tributed random variables with a diverging variance. vestigated thoroughly if13-17, resulting in:(i) a normal

We find (a) a lower bound for the mean square displace-Gaussian diffusion as expected from the central limit theo-
ment that is compatible with the kg walk model, andb)  rem, and(ii) a 3/2 power law decay in of the velocity
that the generalized diffusion coefficiebts is very sensitive  autocorrelation function.
to the way the system has been prepared at tim6. As In this work we present numerical results for the case

=3/2 andT=1/2. We use the following numerical proce-
dure. First we generate a set of scatterers on a one-
*Electronic address: barkai@mit.edu dimensional lattice with a lattice spacing equal to unity. Us-
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time t=1024, y=3/2, andT = 1/2. Notice the ballistic peaks of the
propagator ak= *t. The average is over 2810° realizations of
disorder. The bin length is unity.

FIG. 1. A realization of a set of scatterers wiit+ 3/2 exhibit-
ing gaps on many scales. The horizontal axis isxtmordinate.
Throughout this work we consider dimensionless units.

377, 1<y<2

ing a discrete time and space iteration scheme we find an (x?)~
t2,  0<y<l.

exact expression for the probability of finding the particle on
x at timet, p(x,t|x=0t=0), given that at=0 the particle

is onx=0. The initial location of the particle is determined ror >2 one finds normal diffusion. It is clear that the re-
using equilibrium initial conditiongsee details below The  pewal Lary walk approach and the ‘Mg-Lorentz gas are
initial velocity is v=1 or v=—1 with equal probabilities. very different. Within the Ley-Lorentz gas collisions are
p(x,t[x=0t=0) depends on the realization of disorder wenot independent and correlations are important. Hence it is
have generated in the first step. This procedure is repeatédteresting to check whether the renewal/zevalk model is
many times. suitable for the description of the {yg-Lorentz gas. In this

In Appendix A we explain how we generated the randomcontext it is interesting to recall that Sokolev al.[20] have
intervals {£;}. When y=3/2 the mean(é)=[{u(£)d¢ is  shown that correlations between jumps in aydlight in a
finite while the second momerit?)=. Since|v|=1 the chemical space destroy the \nestatistics of_the walk. _
characteristic microscopic time scalg(#& which is referred We consider a continuum model to derive our analytical
to as the mean collision time, and our simulations are foresults; the generalization to the lattice case is straightfor-

timest~100Q(£). For our choice of paramete(g)~4 (see  Ward: Let(p(x,t|x=0t=0))dx be the probability, averaged
more details in Appendix A over disorder, of finding the test particle at timein the

interval (x,x+dx). Initially, at timet=0, the particle is at
x=0, and there is an equal probability of the particle having
a velocityv=+1 or v=—1. Figures 2 and 3 present nu-
merical simulations which showp(x,t|x=0t=0)). One
Let us analyze our one-dimensionalvyel orentz model ~can see that in addition to the central peak>or0, two

using the Ley walk approaci2-4,6,18. Lévy walks de- other peaks appear at locations +t. These peaks, known
scribe random walks that exhibit enhanced diffusion and ar@S ballistic peaks, were observed in a similar context in other
based on the generalized central limit theorem ardyLe Systems exhibiting enhanced diffusip®,11,21. The peaks
stable distribution§19]. Briefly, a particle moves with a con- &€ stable on the time scale of the numerical simulation. The

stant velocityv=+1 orv=—1 and then at a random time height of these peaks decays with time, and according to our

7, its velocity is changed. Then the process is renewed. Eac%mte time numerics the central peak and the ballistic peaks

collision is independent of the previous collisions. The timesdecay according to the same power law when3/2.
Let us analyze analytically the time dependence of the

between collision eventr;} are assumed to be independentbamstic eaks and calculate their contribution to the mean
identically distributed random variables, given in terms of a éo | ¢ Si . =1 it is cl
probability density functiorg( 7). One might expect that the sr(]quare isplacement. Since in our moglgl=1 it is clear
dynamics of the Ley-Lorentz gas can be analyzed using thet at
Lévy walk renewal approach witg(7)~ 7~ "7, for large

7 and 0<y<2, which leads to (p(x,t|x=0t=0))=0, for |x|>t. ©))

2

Ill. RESULTS
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FIG. 3. The same as Fig. 2 for tinte- 4096. The probability of
finding a ballistic path{p(x= *t,t|x=0;t=0))=0.004, is small
but yet of statistical significance whém?(t)) is calculated.

E. BARKAI, V. FLEUROV, AND J. KLAFTER

PRE 61

Qb(t>=r§O T'G,(1), @)

and G,(t) is the probability of findingr scatterers in (@).
G,(t) can be calculated in terms @f(£) and ofh(x;). In
Appendix B we use renewal theory to calculate the Laplace
t—u transform ofQy(t),

n 1
Qp(u)==—+

u

(T—1)h(u)

O EE—— (8)
[1-Tp(w]u

WhenT=1, Q,(u)=1/u, as expected from a transmitting
set of scatterers. In deriving E() we have used the model
assumptions that the interva]g;} are statistically indepen-
dent and identically distributed.

The functionh(x;) depends on the way the system of
scatterers and light particle is initially prepared. Consider the
following preparation process. A scatterer is assigned at the
location x=—L (eventuallyL—~), then random indepen-
dent length intervals are generated using the probability den-
sity u(€). These length intervals determine the location of
scatterers on the line. When the sum of the length intervals
exceeds R the process is stopped. As mentioned, at time

We decompose the ensemble averaged probability density g the light particle is assigned to the point 0. When the

into two terms
(P(x,t|x=0t=0))=(p(x,t|x=0t=0))

1
+§Qb(t)[ S(x+t)+8(x—1)]. (4

The first term on the right-hand sid@(x,t|x=0,t=0)>, is
the probability density of finding the light particle &t
<t. Qu(t) is the probability of finding the light particle at
x=t (x=—t) if initially at x=0 and its velocity is+1
(—1). The left-right symmetry in Eq4) means that we have
used the symmetric initial conditiofi.e., v=+1 or v=
—1 with equal probabilitiesand the assumption that the
system of scatterers is isotropic in an averaged sense. Usi
a similar notation we write

(x2)=(x%) +(x%)y, (5

where(x?), is the ballistic contribution to the mean square

displacement. From Ed4) we have

Qp(P<(x?(t))<t?, (6)

mean distance between scatterdiy = [yéu(£)dé con-
verges(i.e., 1<y) andL—o then according t¢19,22]

Xt

, m&)dé
& '

which is standard in the context of the Lorentz gas when the
moments ofu(€) convergd13,15. This type of initial con-
dition is called the equilibrium initial condition. When 1
<vy<2, Eq.(9) implies thath(x;)~(x{) " and henceXx;)

= [oxth(xs)dx;—oo. At first sight this divergence might
seem to be paradoxical, since the mean distance between
scatterers( &), converges. We notice however that the point

1—

h(x¢)= (©)

"L 0 has a higher probability to be situated in a large gap.

Hence, statistically the intervaly is much larger than the
others and in our casg)=. Eq. (9) implies that on av-
erage one has to wait an infinite time for the first collision
event.

In numerical simulations the system’s lengtfis finite, so
that Eq.(9) is only an approximation, which we expect to be
valid for x;<<L. However, if we observe a system for time
t<L the boundary condition is not expected to influence the
anomalous dynamics. We have generated numerically many

H —(1 _
The upper bound is an obvious consequence of the fact thigndom systems, using.(é)~¢ @) and y=3/2. As

|[v|=1. The lower bound, found using?(t)),=<(x3(t)), is
of no use when all moments q@f(£) converge, since then

Qp(t) usually decays exponentially for long times. Equation

(6) is useful when the moments @f(¢) diverge, a case we
consider here.

To find Qu(t) consider a test particle which is initially of
velocity +1 and located ak=0. The probability that it
reachex=t, at timet, is T" wherer is the number of scat-
terers in the interval of length (), Hence,

shown in Fig. 4h(x;)~(x;)~ " as predicted in Eq9).
We consider the small expansion, of the Laplace trans-
form of w(§),

w(u)=1—(&u+a(&u)?---, (10)

where 1< y<<2 andais a constant. Using a Tauberian theo-

rem and Eqs(8) and(9) it can be shown that for long times
t
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FIG. 4. The probability of finding the first scatterer at a distance Log,o(t)

x; from the origin. Here the average is ovex 30° realizations, and . . . . .

half the length of the system Is=1C°. We use a bin of length 32 FIG. 6. The probability of finding the Ilght particle gt tmlleat_
(dimensionless unijs The solid curve is the theoretical prediction, x=+t (cros_se}sand "_"b(_: —t(doty VErsus time. The solid curve Is
Eq. (9), with no fitting parameters. For largg, h(x;)~x; * and the theoretical prediction, Eq11) (no fitting parametejs which

. L (17 ) . _
y=3/2, which implies thatx;) diverges. gives Qp(t)/2~1"7, with y=3/2.

a P\ 2ay—1) T [t |7 This bound demonstrates that the diffusion is enhanced,
Qy(t)= (_) Y _(_) namely, the mean square displacement increases faster than
F'2—y)\ (& [(2—y) 1-T\(¢) linearly with time.
.o (11) In Fig. 5, we present the mean square displacement of the
' light particle obtained by numerical simulations for the case
v=23/2. We see that for the chosen values of parameters the
Inserting Eq.(11) in Eq. (6) we find asymptotict®~” behavior can be observed for times that are
accessible on our computer. Figure 5 clearly shows that the
2 3— ballistic contribution(x?),, to the mean square displacement
a<§> t Y NI . . )
(_) <(x3(t))=<t2 (12) (x?) is significant. Notice that our numerical results are pre
r2-y\( sented for times that are much larger than the mean collision
time (£)~4.
In Fig. 6 we show the probability of finding a ballistic
] path, namely, the probability of finding the light particle at
timet atx=+t, or atx= —t. By definition these probabili-
ties are equal t®,(t)/2. We observe thé!~? behavior of
Qp(1), Eq.(11), with which our lower bound was found. The
fact that the probability of finding the particlexatt is equal
to the probability of finding the particle at= —t means that
our system is isotropic in an averaged sense. This is achieved
by choosing large values @f.

The lower bound in Eq12) does not depend on the trans-
mission coefficienfl. Thus, even when all the scatterers are
perfect reflectors, withR=1, the diffusion is enhanced.
Large gaps that are of the order of the lengtre respon-
sible for this behavior. The transmission coefficient has an
important role in determining what is the asymptotic time of
the problem. The condition that the first term in EGl)
dominates over the second reads

108

10

Log,({x* })

1000

*

100 1 1 IIIIII| 1 1 IllIII| 1 1 L1l
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t T
Log,,(t) ) >2(y—1) 1T (13

FIG. 5. logd (x?)] versus logyt). The points are numerical
results. The straight curve is the asymptotic behavior of the loweOnly under this condition is the behavior in EQL2) ex-
bound, Eq(12) (i.e., (x?),). We usey=3/2 and sa(x?)=Ct%2 pected to be valid.
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The lower bound in Eq(12) is compatible with the re- 0.1 T T T
newal Lery walk approach Eq(2). Other stochastic models
[1,23] for enhanced diffusion based on\yescaling argu-
ments predict

(X2~ for 1<y<2, (14

0,t=0) )

which is different from Eq(2). This approach is based upon
a fractional Fokker-Planck equati¢drFPB,

=0,tlx=

ap(x,t)
ot

=D, V7p(x,t), (15

Log,o({p(x

used in[23] to predict an enhanced diffusion. The nonlocal
fractional operator in Eq(15) is defined in Fouriek space
according to the transformatiol ?— —|k|?. Our findings - .
here show that Eq.14) does not describe the dynamics of L -
the Levy-Lorentz gas, since 3 y=2/y for 1= y<2. Ll Ll L

Consider now the case when the light particle is initially 10 100 1000 10
located at a scattering point. Such an initial condition is Log,(t)
called a nonequilibrium initial condition. Under this condi-
tion h(xs) = u(X;) instead of Eq.(9). This means that the
particle has to wait an average tifé) before the first col-
lision event instead of the infinite time when the equilibrium
initial conditions were used. Using Eg&), (8), and (10),
and ,&(u)zl—(Au)“r ... for 0<y<1 and smallu, we (c) The bfallistic peaks at=+t andx=—t can be ana-
find lyzed analytically. They decay as power laws.

(d) The way in which the system is prepared atO (i.e.,

FIG. 7. logd{p(x=0t/x=04t=0))] versus logyt). The
points are numerical results. The straight curve is a fit exhibiting the
t~ %2 behavior.

1 (y—1) ot 2—y equilibrium versus nonequilibrium initial conditionsleter-
1—_Tal“(2——y)<§> (@) , 1<y<2 mines the behavior of the ballistic peaks. Since these peaks
(x?)= - contribute to the mean square displacement even at large
1 (1= z(l) v 0<y<1. times, we conclude that the diffusion coefficidd is sen-
1-TIr'(2—y) \A ' sitive to the way the system is prepared.
(16) In our work we considered an initial condition=1 or

v=—1 with equal probabilities. It is clear that if we assign a
velocity v=+1 to the light particle, at=0, (p(x,t|x=0;t
=0)) will never become symmetric, even approximately. In-
stead of the three peaks in Fig. 3 one will observe only two
peaks, one at=0 and the other at= +t.

For 1< y<2 the bound differs from th&¢*~” found in Eq.
(12), where we choséi(x;) according to Eq(9). Thus the
ballistic contribution(x?),, defined in Eq(5), behaves dif-
ferently for the two ensembles even whenoe. This is very

different from regular Lorentz gases, which in the linit The reason for these behaviors in thevyorentz gas

Holzir?;ﬁyn%ge; S;E\ésv;otr:zebgﬂgl\z;bg{%é correlation func-Stems from the statistical importance of ballistic paths. This

tion (p(x=0¢|x=04=0)) obtained from the numerical is different from systems in which diffusion is normal, in
simulation with equilibrium initial conditions. We observe a V\{h'f:h these paths are of no S|gn|f|cance atlong tlme'.s..Thus,
t~V2 decay of the correlation function. This behavior is com-Similarly to Newtonian dynamics, the system exhibits a
patible with standard Gaussian diffusion, which gives theStrong sensitivity to initial conditions.

well knownt ™92 result ind dimensions. We find this behav- ~ EXperiments measuring diffusion phenomena usually
ior for time scales which are much larger than the mearsample data only in a scaling regime.g., — yDit<x
collision time (£); however we have no proof that this be- <D1t). Rare events where the diffusing particle is found
havior is asymptotic. On the other hand, théviewalk  outside this regime are often assumed to be of no statistical

model predictg p(x=0t|x=0t=0))~t" 1 [6]. importance. Here we showed that for thevizd orentz gas
rare events found in the outermost part (@f(x,t|x=0t
IV. SUMMARY AND DISCUSSION =0)) are of statistical importance.

_ _ _ o, Note added in prooRecently, related theoretical work on
In this work we have considered a one-dimensional-e  enhanced diffusion was publishg24].

Lorentz gas. We have shown the following.

(@) The mean square displacement in theny-&orentz
gas is compatible with the ‘Mg walk framework and not
with the FFPE.

(b) Ballistic contributions to the mean square displace- We thank A. Aharony, P. Levitz, I. Sokolov, and R. Met-
ment are important even for large times. zler for helpful discussions.
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APPENDIX A

As mentioned we use a lattice model for the simulation so

that ¢ is an integer. We use the transformation

. um
Nz
Herel =INT{z} is the integer closest tpsatisfyingl <z. In

Eq. (Al) u is a random variable distributed uniformly ac-
cording to

1ly

+1. (A1)

§:INT|

OSUming us l-’lmax$ 1;

(A2)

whereu,,;, and u,,,4 are cutoffs. It is easy to generate the
random variablel on a computer. The probability of finding
an interval of length¢ is,

3
e L (A3)
with
Ov y<ymin
2y yt e
me(y)= ElJr—yZV Ymin<Y<Ymax (A4)
0, Y>Ymax-
Here
—t UminmT Wy —|t UmaxT™ Ly
Ymin= |12 2 ’ Ymax= | @& 2
(AS5)

are the cutoffs ofuc(y). Whenun,i,=0 anduy,,=1 we
haveyin=0 andyma,=>. In EQ. (A4) A=Upax— Unin de-
termines the normalization conditigfif u.(y)dy=1.
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To derive Egs.(A3)—(A5) we use the transformation
[tan@u=/2)]Y”, and then u.(y)=g(u)|du/dy|, where
g(u) is the uniform probability density af.

For large¢ we find

§<&max

2_75*1* Y
pn(é)~{ TA (A6)

0, &>&max:

With £a,= INT{[tanUmaxm/2) 17} + 1. Whenup,,,=1 the
second moment of.(§) diverges.

In our numerical simulations we consider,;,=1/2,
Umax=1, andy=3/2. Then(¢)=4.031 and for large, we
find

(A7)

m(€)~(8lm) e &1,

APPENDIX B

The calculation ofQ,(u) can be found iM19,27. The
probability that the interval (0) is empty is

Go(t)=1—f;h(7)dr (B1)

and in Laplace spac&y(u)=[1—h(u)]/u. The Laplace
transform ofG,(t) for r=1 is found using convolution:
Gr(u)=h(w) " (uW(u). (B2)
W(t)=1—[fLu(€)dé is the probability that an interval of
length (0t) is empty, given that a scatterer occupies. On

Laplace spac&V(u)=[1— (u)]/u. Using Eqs.(B1), (B2),
and(7) we find (8).
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